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Abstract–Advanced control systems are increasingly 

employed for intelligent factories. Fuzzy logic control (FLC) 

and backward propagation neural network (BPNN) control 

are investigated in this paper to realize position control for a 

linear switched reluctance motor (LSRM) against its 

nonlinear characteristics. Principles for FLC and BPNN 

control are introduced elaborately. Simulation results via 

BPNN show that dynamic position errors for the LSRM can 

be limited to 0.1 mm. Experimental results on FLC suggest 

that point-to-point position tracking for the motor can 

achieve 0.01 mm, constraining dynamic position error in 0.1 

mm. By experiments, FLC for the LSRM performs better 

than traditional proportional-integral-derivative (PID) 

control, proving the effectiveness of the alleviation of the 

nonlinearity for the LSRM. 

 
Keywords–Fuzzy logic control, backward propagation neural 

network, LSRM, position tracking. 

 

I.  INTRODUCTION 

 

Intelligent control algorithms are introduced to improve the 

performance of linear motors for precisely positioning 

trackers with high stability, because of uncertainties on the 

motors caused by their nonlinear characteristics and 

interferences from circumstance [1]. A liner switched 

reluctance motor (LSRM) as one of the linear motors is the 

control plant in this paper. The nonlinearity of the motor 

exists due to saturated magnetic cores, nonlinear thrust 

outputs and variety between static fraction coefficients and 

moving fraction coefficients [2]. Meanwhile, interference 

caused by varied loads, coupled flux lines and drifted 

parameters may significantly deteriorate the performance 

of the motor. Employing traditional PID controller is 

unable to fulfill the requirements of good performance 

under these uncertainties. Therefore, advance control 

approaches are increasingly investigated to address those 

problems mentioned. To solve the deteriorated 

performance stemmed from nonlinearity and altered 

operation conditions of the motor, fuzzy logic control 

(FLC), neural network control (NNC), adaptive control and 

sliding mode control (SMC) are used to control the position 

of the motor [3-6]. These control methods can imitate 

expert’s experience, compute and exert adjusted control 

commands for the motor to get a satisfactory performance. 

After using these advanced controllers, not only will the 

overall hardware cost on the motion system reduce, but also 

the motor performance becomes better. Among them, FLC 

can transform linguistic control rules from experts’ 

knowledge to regulate behaviors of mechanical devices, 

regardless of their accurate mathematic models [3]. 

Consequently, the controller would become simple and 

easy to design and implement. For industry control, most 
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processes are suited to use linguistic rules, especially for 

those complex systems that their dynamic models are 

difficult to obtain or precisely predict. After imitating what 

the experts’ programed, the controller would become 

intelligent. BP NNC is a popular intelligent control method. 

This method is capable of addressing nonlinear issues for 

the whole system because of its multiple layer mapping 

transformations with nonlinear characteristics [4]. Also, 

self-teaching and self-adaptation can optimize the weights 

of nodes, thus improving the performance of the motor and 

enhancing the stability of the system [5]. Except for these 

merits, BP NNC has high fault-tolerant capability so that 

the whole system would become more robust. Adaptive 

control is an effective approach to avoid the influences of 

altered environment or parameters. The designed zeros or 

poles for the motor will be regulated after identifying the 

parameters of the controlled subject. For the motor, in this 

paper, the position of the motor can be controlled and 

regulated after identifying the dynamic parameters of the 

operated motor [5]. Accordingly, the controlled position 

will be modified with more accuracy even though the 

parameters of the motor vary with the time. Sliding mode 

control (SMC) is another advanced control to address the 

nonlinear behavior of the control plant [6]. The core to 

design the SMC is to find a suitable sliding mode surface 

for the motion system.  

 

In this paper, fuzzy logic control and BP neural network 

control approached mentioned are designed for the motor. 

Simulation and experimental results are obtained. After 

comparing the controlled results, advantages from each 

advanced controller are yielded, with elaborated analysis 

for the obtained results.  

 

II. INTRODUCTION FOR THE LSRM 

 

A.  Configuration of LSRM  

The basic mechanical structure of the LSRM is shown in 

Fig.1. This motor consists of three phase windings and each 

winding possesses a coil wrapped around a steel stacked 

core. Three cores fixed on an aluminum plate constitute the 

mover of the motor. Their section views are shown in Fig.1. 

The mover connected with four slippery wheels that belong 

to the components of two linear guides. The linear guides as 

well as the stator that is also comprised of stacked steel 

plates are fixed on a basement, which is the stator base. A 

1-µm-resolution linear optical encoder is integrated into the 

LSRM system to observe the motion profile of the moving 

platform and provide the feedback position information. 

The main electrical and mechanical parameters of the 

LSRM are listed in Table I. 
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Fig. 1: The sections views of the motor.  

 

Table 1: Specifications of the LSRM 

Parameters   value 

Rated current 4A 

Mass of moving platform 1.5kg 

Mass of stator 2kg 

Pole width 6mm 

Pole pitch 12mm 

Phase division 10mm 

Phase resistance 2ohm 

Air gap length 0.3mm 

Number of turns 160 

Stack length 25mm 

Encoder resolution      1μm 

Rated current 4A 

Mass of moving platform 1.5kg 

 

B. Dynamic model of LSRM  

The electrical terminal for any one phase can be 

characterized as the voltage balancing equation as follows: 

 

u = R × i +
dl(i,x)

dt
               (1) 

 

where R, u and i represent phase resistance, terminal 

voltage and current, respectively. x is displacement and 

l(i,x)
denotes flux-linkage. From the mechanical side 

F =M
d 2x

dt2
+B
dx

dt
+ f

L
=

1

2
× i2 ×

¶L(i,x)

¶x
     (2) 

 

where F is electromagnetic force, 
f
L , M and B are load 

force, mass of moving platform and friction coefficient, 

respectively. 

 

 

C. Nonlinearity of the LSRM  

As the saturation phenomenon of the magnetic steel 

materials exists and nonlinearity for the motor will occur.  

All motors cannot avoid the nonlinearity. The LSRM, as 

one of the motors, has a highly nonlinear characteristic. 

According to equation (2), if the input command is a force 

reference, this force command can be transformed as a 

current reference for drivers of the motor. Also, to improve 

the performance of the motor, force distribution function 

(FDF) is an effective way to alleviate the nonlinear force 

outputs excited by phase currents [5]. The overall FDF 

scheme is shown in Fig.2. Force ripples and acoustic noise 

generated by the motor can also be mitigated via a 

reasonable FDF that is designed to match the 

electromagnetic behavior of the motor. Apart from this 

approach, the advanced control method introduced as the 

following can also address the nonlinear problem. However, 

advanced control algorithms are usually employed for the 

motor to get a better performance against the nonlinearity.  

 

 
Fig. 2: The structure of the FDF. 

 

III. ADVANCED CONTROL FOR THE LSRM 

 

A.  Configuration of control 

This motor is suitable for a fuzzy PD controller. This 

controller can adjust control parameters according to the 

status of the motor via fuzzy logic approach. The fuzzy 

logic mainly consists of fuzzification, rule bases, fuzzy 

reasoning and defuzzifier. Kp and Kd are the proportional 

gain and the differential gain of the PD controller, 

respectively. The control diagram is shown in Fig. 3. 

 
Fig. 3: FLC diagram for the LSRM. 

 

The proposed fuzzy PD controller takes the position error 

and its change as the inputs and outputs the values of Kp 

and Kd. The two coefficients can be formulated as 

 

0d d dK K K= +               (3) 

0p p pK K K= +                (4) 

 

where Kp0 and Kd0 are the initial values ,∆Kp and ∆Kd are 

the increases of Kp and Kd. 
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By using the feedback signal from a position sensor, 

position error E and its change rate Ec can be obtained. 

The fuzzy logic controller will employ the two values. In 

this paper, the regions of the fuzzy sets for the two 

parameters are {-6 -4 -2 0 2 4 6}. After fuzzification, the 

fuzzy set values will be {NB NM NS ZO PS PM PB} and 

the corresponding linguistic variable fuzzy set is [negative 

large, negative middle, negative small zero, positive small, 

positive middle, positive big], as shown in Fig.4. Similarly, 

the discussion region for Kd and Kp are given in Fig.5. The 

rule bases for Kp and Kd are listed in Table II and III.  

 

In this paper, we choose the triangle membership function 

for E, Ec, Kp and Kd, Mamdani inference method for fuzzy 

reasoning, and the center of gravity method for 

defuzzification. 

 
Fig.4: Membership functions of E and Ec. 

 
Fig.5: Membership functions of Kp and Kd. 

 

The basic control rule for the fuzzy logic controller mainly 

includes: 

(1) When |E| is large, to achieve a stronger dynamic 

response performance, we can set larger Kp and smaller 

Kd. 

(2) When |E| is medium size, in order to obtain a smaller 

overshoot of the system response, Kp can be set smaller. 

At this time, Kd can be set larger. 

(3) When |E| is small, to make the system stable, the value 

of Kp should be set smaller. To avoid the system 

oscillation near the set value, the value of Kd should refer 

to the value of |Ec|. When the value of |Ec| is small, the 

value of Kd can be larger. In contrast, when the value of 

|Ec| is larger, the value of Kd can be small. 

 

Table II: Rule base of the Kp 

 
 

B. Artificial neural network 

Neuron here is the basic processing unit for the artificial 

neural network. Generally, it consists of multi inputs and a 

single output, processing nonlinear signals. A neuron 

includes a connector with a weight value, a sum unit and  

Table III: Rule base of the Kd 

 
 

 

Fig.6: Model of an artificial neuron. 

an activated function. A neuron with a series of inputs 1x ,

2x ,…, nx of connectors with weights 1w , 2w ,…, nw  is 

shown in Fig.6. iy  is the output of the neuron i . After 

summing, a linear integrity output iu is yielded through 

these iy . y
i
=j(×)  is the activated function with a 

threshold i  to constrain the output scope of the 

designed neuron. The mathematic model for the neuron 

can be expressed as  

                  

1

n

i ij j

j

u w x
=

= ，          (5) 

                   i i inet u = − ，          (6) 

                     ( )i iy net= .           (7) 

where inet denotes a computing method to combine these 

inputs.  

a) Backward Propagation neural network  

Back propagation (BP) neural network is one kind of 

neural network and it can be also named as a backward 

propagation network or a multi-level forward network.  

BP algorithm is an optimal method based on gradient 

downward approach, adjusting the weight to minimize the 

overall error of the network. It comprises forward network 

computation and error inverse propagation. These weights 

for neurons will be optimized after backward transferring 

errors to minimize the overall error of the controlled 

system. BP network usually involves an input layer, a 

hiding layer and an output layer. A BP network is shown 

in Fig. 7, with the numbers of the inputs, the outputs and 

the implicit node m, n and q, respectively.  
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Fig.7: The structure of the BP neural network. 

 

b) BP forward network design  

The outputs of the input layer of the BP network can be 

expressed as   

              
1 , ( 1,2,..., )j jO x j m= =         (8) 

The inputs and outputs of the implicit layer are  

                     

2 2 1

1

, ( 1,2,..., )
n

i ij j i

j

net w O i q
=

= − =     (9) 

                  
2 2( )j iO net=             (10)               

Inputs and outputs of the output layer can be formulated as  

             

3 3 1

1

, ( 1,2,..., )
q

k ki i k

i

net w O k n
=

= − =      (11) 

                   
3 3( )j iO net=            (12) 

where 
1

jO ,
2

iO ,
3

kO  are outputs of the input layer，and 

2

inet , 
3

inet are inputs of the complicit layer and the 

output layer.
2

ijw and
3

ijw are connecting weights between 

the input layer, the implicit layer and the output layer. i ,

k are thresholds of the implicit layer and the output layer.

y
i
=j(×) is the activated function expressed by  

                 
1

( )
1 x

x
e


−

=
+

             (13) 

                 
1

( )
1

x

x

e
x

e


−

−

−
=

+
             (14) 

c) Regulation of PB neural network via error 

The output error of the system is  

              
2

1

1
( )

2

n

k k

k

J r y
=

= −            (15) 

where r is the reference of the system and y is the output.  

 

d) Weight regulation of output layer 

Weights, as weighting factors of the output layer, will 

adjust according to the negative value of the gradient to 

function J 

3
3

3 3 3

ki
ki

ki ki ki

netJ J
w

w net w
 

 
 = − = − 

  
      (16) 

where   is a learning rate, >0. 

And  

               

3
2

3

ki
i

ki

net
O

w


=


                (17) 

               
3

' 3

3 3 3
( ) ( )k

k k i

k k k

OJ J
r y net

net O net


 
=  = − − 

  
  (18) 

assuming that  

             
' 3( ) ( )k k k ir y net = −         (19) 

Then  

3 ' 3 2 2( ) ( )ki k k i i k iw r y net O O   = −   =   (20) 

it can be rewritten as  

3 3 3 3 2( 1) ( ) ( )ki ki ki ki k iw k w k w w k O+ = +  = +   (21) 

to improve the convergent rate of the computing results, 

the weights can be modified as  

3 3 2

3 3

( 1) ( )

( ( ) ( 1))

ki ki k i

ki ki

w k w k O

w k w k





+ = +

+ − −
       (22) 

where  is an inertia coefficient and 0 < <1. 

 

e) Weight regulation of implicit layer  

According to the gradient of J, the weights for the implicit 

layer can be calculated as  

 

2
2

2 2 2

ki
ki

ki ki ki

netJ J
w

w net w
 

 
 = − = − 

  
       (23) 

where   is a learning rate, >0. 

And  

                

2
1

2

ki
i

ki

net
O

w


=


                (24) 



 

                 
2

' 2

2 2 2
( ) ( )k

k k i

k k k

OJ J
r y net

net O net


 
=  = − − 
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   (25) 

the output of the implicit layer will put an impact on all 

units connected with the unit from the layer  

             

3

2 3 2
1

3

3
1 1

n
k

kk k k

n n

ki k

k kk

netJ J

O net O

J
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net

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
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
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      (26) 

given that  

                        

3 ' 3

1

( ) ( )
n

i k ki i

k

w net  
=

= −          (27)      

then                 

2 3 ' 2 1 1

1

( ) ( )
n

ki k ki i i k i

k

w w net O O   
=

 =    =   (28) 

it can be rewritten as  

2 2 2 2 1( 1) ( ) ( )ki ki ki ki k iw k w k w w k O+ = +  = +   (29) 

likewise, to improve the convergent rate of the computing 

results, the weights can be modified as 

2 2 1

2 2

( 1) ( )

( ( ) ( 1))

ki ki k i

ki ki

w k w k O

w k w k





+ = +

+ − −
      (30) 

where an inertia coefficient and 0 < <1. 

 

f) BP neural network PID control 

BP network is capable of self-learning and nonlinear 

adaption. BP network PID control is to seek the optimal 

control parameters for the PID controller by self-learning 

of the BP network. The whole control block can be plotted 

as in Fig. 3. r is the reference and y is the output. e is the 

error of the system. u is the output of the system controller. 

Kp, Ki and Kd are the control parameters for the PID 

controller, obtained from the BP network. These 

parameters for the PID controller and the BP network are 

the two key parts for the whole control of the system. 

According to the status of the system, BP network can 

enter a self-learning to adjust the parameters for the PID 

controller so that the adaptive and nonlinear control will 

be realized.   

 

Fig.8: PID control scheme with neural network for the LSRM. 

 

IV. VERIFICATION OF THE ADVANCED CONTROL 

 

To verify the effectiveness of the mentioned advanced 

control algorithms, simulation software 

MATLAB/Simulink is introduced to build the controllers 

including fuzzy logic control and BP neural network 

control. After building the simulation block via Simulink, 

simulation results are obtained for neural network PID 

controller, as shown in Fig. 9. Fig. 9 (a), (b) and (c) show 

the values of the coefficients Kp, Ki and Kd, respectively. 

Fig.9 (d) and (e) illuminate the position tracking and its 

errors. Position tracking errors corresponding to a 

sinusoidal reference can be limited less than 0.1 mm under 

the steady status of the motor. Meanwhile, by programing 

the Simulink control blocks of fuzzy logic control into 

dSPACE card, a hardware controller for the fuzzy logic 

control of the linear motor is established. Experimental 

results are shown in Fig. 10. Position tracking errors are 

constrained in 0.1 mm for sinusoidal reference and 0.01 

mm for square wave reference, respectively. Both 

sinusoidal and square wave references validate the 

effectiveness of the designed fuzzy logic controller. 

 
(a) Values of Kp for BPNN     (b) Values of Ki for BPNN 

 
(c) Values of Kd for BPNN    (d) Position response controller 

 
(e) position error of the BPNNC control system 

Fig. 9: Coefficients (a), (b), (c) and (d) position response and 

errors (e) for the designed BPNN control. 

 

The comparison of PID controller and fuzzy logic PID 

controller are shown in Fig.10. From the experimental 

results especially under a sinusoidal reference, position 

errors from the fuzzy logic controller are less than that 

from a PID controller, which obviously shows that 

advanced control can improve the performance of the 

LSRM, particular under a varied reference. Although the 

performance of the LSRM under the reference could be 

worse as different operation status with nonlinear factors, 

advanced control motion system outweigh traditional 

equipment and can perform better in industry applications. 



 

 
(a) Position response of square wave under fuzzy logic 

controller.  

 
(b) Position response of sinusoidal wave under fuzzy logic 

controller. 

Fig. 10: Position response for sinusoidal and the square wave 

reference (a) and the sinusoidal wave, under PID and fuzzy logic 

PD controllers. 
 

IV. CONCLUSION 

 

Fuzzy logic PD control and BP neural network PID 

control are advanced control algorithms to better 

performance of complex equipment and nonlinear 

machines. They inherit the advantages of PID controller, 

regulating behaviors of control subjects without accurate 

mathematic modes. Apart from this merit, these advanced 

control systems can adjust their control parameter 

according to the variations of the status of the entire 

control system, overcoming shortcomings of traditional 

PID control that fails to conquer the influences from 

varied references and interferences of the environment. 

Advanced control systems could dominate industrial 

equipment for intelligence factories and smart mobility.  

 

REFERENCES 

 
[1] Wen Yu, Recent Advances in Intelligent Control Systems, 

Springer Dordrecht Heidelberg London New York, 2009. 

[2] J. F. Pan, N.C. Cheung, Yu. Zou, “An Improved Force 

Distribution Function for Linear Switched Reluctance 

Motor on Force Ripple Minimization with Nonlinear 

Inductance Modeling", IEEE Trans. Magn., Vol. 48, no.11, 

2012, pp. 3064-3067. 

[3] G. El-Saady, El-Nobi A. Ibrahim, M. Abuelhamd, “Hybrid 

PD-Fuzzy controller for high performance linear switched 

reluctance motor under different operating conditions”, 

2016 Eighteenth International Middle East Power Systems 

Conference (MEPCON), 2016, pp. 437-444. 

[4] R. Zhong, Y. B. Wang, Y. Z. Xu, “Position sensorless 

control of switched reluctance motors based on improved 

neural network,” IET Electric Power Applications, Vol.6, 

no.2, 2012, pp.111-121. 

[5] Shi Wei Zhao, Norbert C. Cheung, Wai-Chuen Gan, Jin 

Ming Yang, Jian Fei Pan,"A Self-Tuning Regulator for the 

High-Precision Position Control of a Linear Switched 

Reluctance Motor”, IEEE Ind. Electron., vol. 54,no. 5, Oct. 

2007. 

[6] Jianfei Pan, Siu Wing Or, Yu Zou, Norbert C. Cheung, 

“Sliding-mode position control of medium-stroke voice coil 

motor based on system identification observer,” IET 

Electric Power Applications, Vol.9, no.9, 2015, pp.620-627. 

 

 

ACKNOWLEDGMENT 

 

The author gratefully acknowledge of the financial support 

of the Research Office, The Hong Kong Polytechnic 

University under the Project G-YBLH. 


